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Abstract

Theoretical and experimental studies on torsional vibration of an aircraft engine–propeller system are presented in this

paper. Two system models—a rigid body model and a flexible body model, are developed for predicting torsional

vibrations of the crankshaft under different engine powers and propeller pitch settings. In the flexible body model, the

distributed torsional flexibility and mass moment of inertia of the crankshaft are considered using the finite element

method. The nonlinear autonomous equations of motion for the engine–propeller dynamical system are established using

the augmented Lagrange equations, and solved using the Runge–Kutta method after a degrees of freedom reduction

scheme is applied. Experiments are carried out on a three-cylinder four-stroke engine. Both theoretical and experimental

studies reveal that the crankshaft flexibility has significant influence on the system dynamical behavior.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Significant torsional vibration and dynamic shear stresses often occur in the crankshaft of an
engine–propeller drive system. The crankshaft torsional vibration is the leading cause for its failure. The
engine manufacturers are required by transportation authorities to certify the magnitudes of torsional
vibrations and shear stresses in the crankshaft through tests for each application. To reduce the costs
associated with the expensive and exhaustive tests designed to cover various normal and abnormal operating
conditions, it is often desirable to have a computer code for theoretical predictions of stresses in the
crankshaft. Once validated, the computer simulation results can be used in conjunction with a selected set of
test results for the certification purpose.

In some early work on torsional vibrations [1–4], crankshaft models were developed in an isolated manner.
The engine was treated as a rigid block. The gas torque and the loads were considered as the prescribed
functions of time. Natural frequencies and responses of the crankshaft were calculated using the Holzer
method, the transfer matrix method or the finite element method. The dynamic coupling among different
components is often ignored in these models so that the system equations of motion can be simplified as linear
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.06.004

ing author. Tel.: +1416 979 5000x7687; fax: +1 416 979 5265.

ess: syu@ryerson.ca (S.D. Yu).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.06.004
mailto:syu@ryerson.ca


ARTICLE IN PRESS

Nomenclature

Ap piston top area (m2)
C global constraint matrix
Cn constraint matrix at interface n

De geometric matrix
g constraint vector
G derivative matrix of the constraint vector
G shear modulus (Pa)
h nonlinear terms in the system equations

of motion
I mass moment of inertia of the engine

block (kgm2)
I0 derivative of I with respect to the

crankshaft angular position at the en-
gine–propeller interface (kgm2 rad�1)

Ic mass moment of inertia of the counter-
weight and the crank pin (kgm2)

IG ,i mass moment of inertia of the ith
connecting rod (i ¼ 1, 2, 3) (kgm2)

Ip mass moment of inertia of the propeller
assembly (kgm2)

I0 Fourier coefficient of the constant term
for the effective mass moment of inertia
of the engine block

Ik Fourier coefficient of the kth cosine term
for the effective mass moment of inertia
of the engine block (k ¼ 1,y,40)

Î k Fourier coefficient of the kth sine term
for the effective mass moment of inertia
of the engine block (k ¼ 1,y,40)

J polar moment of cross sectional area
(m4)

K system stiffness matrix
Kc crankshaft stiffness matrix
Ke element stiffness matrix
Ks segment stiffness matrix
le element length (m)
L Lagrangian
mP; i mass of the ith piston (i ¼ 1, 2, 3) (kg)
mR; i mass of the ith connecting rod (i ¼ 1, 2,

3)
M system mass matrix
Mc crankshaft mass matrix
Me element mass matrix
Ms segment mass matrix
N shape function
pi pressure in the ith cylinder (i ¼ 1, 2, 3)

(Pa)
q generalized force
Q gas torque (Nm)

Qp aerodynamic torque of the propeller
(Nm)

Q0 Fourier coefficient of the constant term
for the gas torque

Qk Fourier coefficient of the kth cosine term
for the gas torque (k ¼ 1, y, 40)

Q̂k Fourier coefficient of the kth sine term
for the gas torque (k ¼ 1, y, 40)

rG, j position of the mass center of the jth
connecting rod in the engine block
(j ¼ 1, 2, 3)

R segment radius (m)
si piston position (j ¼ 1, 2, 3) (m)
T kinetic energy of the system (J)
T1 kinetic energy of the engine block (J)
Tc kinetic energy of the crankshaft (J)
Te kinetic energy of an element (J)
Tp kinetic energy of the propeller assembly (J)
Ts transformation matrix
vP, i velocity of the ith piston (i ¼ 1, 2, 3)

(m s�1)
vG, i velocity of the mass center of the ith

connecting rod (i ¼ 1, 2, 3) (m s�1)
V potential energy of the system (J)
Vc potential energy of the crankshaft (J)
Ve potential energy of a finite element (J)
x modal coordinates
x global axial coordinate (m)
a1 polynomial coefficient for the propeller

aerodynamic torque
a2 polynomial coefficient for the propeller

aerodynamic torque
z local axial coordinate (m)
Ki natural frequency matrix of the internal

structure
h generalized coordinates for the entire

crankshaft
y angular position of the crankshaft at an

axial location (rad or deg)
h(i) independent generalized coordinates
h(d) dependent generalized coordinates
y1 angular position of the interface between

the engine block and the crankshaft (rad
or deg)

he generalized coordinates in an element
ht internal generalized coordinates
hf interface generalized coordinates
hp angular position of the interface between

the propeller assembly and the crank-
shaft (rad or deg)

hs generalized coordinates in a segment
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fj angular positions of three connecting
rods (j ¼ 1, 2, 3)

Ut internal modal matrix

Uf interface modal matrix
k Lagrange multiplier vector
r density (kgm�3)
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equations. The natural frequencies obtained from an individual crankshaft with pre-assumed boundary
conditions may not be real due to the varying interface conditions. Recently, sophisticated nonlinear models
involving the coupling of the crankshaft motion on the engine block have been developed. Pasricha and
Carnegie [5] modeled the changing inertia of a multi-cylinder engine. Their model did not involve driving
forces and loads. Brusa et al. [6] considered the effect of the changing inertia and prescribed time-dependent
forcing functions in a crankshaft torsional vibration analysis. More advanced models can be found in
Refs. [7,8], which involve the changing inertia and external forces as functions of crankshaft motion. However,
the crankshaft is treated as a rotational spring in their models. In another model [9], the crankshaft
deformation is described using finite elements and modal coordinates. The modal vectors obtained by ignoring
the changing inertia of the engine block are used to approximate the true rotation-dependent modal vectors.
Hoffman and Dowling [10] developed a model for internal combustion engine to involve all the above
nonlinearities, but crankshaft flexibility is not considered in that model.

Strong nonlinear terms [11] are present in an engine–propeller dynamical system when the effect of changing
inertia of the engine and the speed-dependent aerodynamic load from the propeller are considered. The system
response exhibits sub- and super-harmonic components with reference to the mean angular speed of the
crankshaft. Presence of the nonlinear factors along with the crankshaft complex geometries makes it hard to
seek an accurate analytical solution for the torsional vibration problem.

When one or more flexible bodies in a multibody dynamical system are modeled using finite elements, this
usually results in a large number of degrees of freedom and leads to unbearable computation cost [12]. This
problem is especially true in dealing with nonlinear dynamic system because efficient integration algorithms,
such as the Newmark method, lose accuracy. To reduce the number of degrees of freedom while retaining a
high degree of accuracy, reduction techniques are often used. The component mode synthesis is commonly
used in a dynamic analysis. The displacements within a substructure (component) are described by
combinations of assumed basis vectors, known as the component modes [13]. System equations are
transformed from the physical space to the modal space. To reduce the degrees of freedom, some modes for
the component (usually the inaccurate high-frequency modes) are ignored and only the desired modes are
kept. The component modes can be the eigenvectors of the component or the Ritz vectors. The component
mode synthesis was first proposed by Hurty in the 1960s [14] and improved by Craig and Bampton [15]. An
application of this type of reduction scheme in the crankshaft-engine analysis can be found in Ref. [16].

In this paper, a coupled rigid and kineto-elasto-dynamic model is developed for an engine–propeller system
shown in Fig. 1. The engine is regarded as a system of rigid bodies. The stepped crankshaft is modeled using
the three-node torsional finite elements. The aerodynamic torque is obtained using the blade element theory.
The aerodynamic torque varies with the instant angular speed at the interface between the crankshaft and the
propeller. A set of nonlinear equations of motion is obtained using the augmented Lagrange equations.
Component mode synthesis is then applied to the equations of motion to produce a small-scale model without
weakening the nonlinearities. Runge–Kutta algorithm is used to determine the transient and steady state
responses of the reduced model.

A Saito-450 glow assisted methanol engine, a SOLO 2400 propeller and various control devices, are set up for
experimental studies of the crankshaft motions. A 64-tooth magnetic encoder is installed on the torque plate to
monitor the crankshaft transient velocity. Pulse signals generated when the magnetic teeth pass a sensing unit
are collected by an A/D device with a sampling rate high enough to restore the pulse profile. Linear
interpolation is used to find the arrival time for each magnetic tooth from the pulse profile, and the angular
position vs. time relationship is therefore obtained. An adaptive cubic polynomial interpolation scheme is used
to resample the uneven spaced angular position vs. time series, so that finite difference and fast Fourier
analysis can be applied to the signal.
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Fig. 1. Illustration of a Saito-R450 engine and SOLO propeller system.
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2. System modeling

2.1. Engine kinematics

The engine studied in this paper is a 4.25 cubic inch, 7 horse power, four-stroke radial Saito-450 engine. The
Saito-450 engine mechanism is a planar 8-bar linkage shown in Fig. 2. The eight bars are the ground, three
pistons, the master connecting rod, and two slave connecting rods. In this mechanism, the gas force produced
by the master cylinder is transmitted directly to the crankshaft through the master connecting rod. The gas
forces produced from the second and third cylinders are transmitted to the crankshaft through the two slave
rod pinned to the master connecting rod. To determine the kinetic energy, the potential energy and the gas
torque at an arbitrary crank position, a kinematical analysis need to be conducted.

In the kinematical analysis, the crankshaft angular position, y1, measured counterclockwise from the
centerline of the primary cylinder, is chosen as the generalized coordinate for the one degree of freedom (dof)
rigid planar mechanism. Linear positions of the three pistons and mass centers of all moving links, and
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Fig. 2. The skeleton diagram of an eight-bar mechanism used in a Saito-450 engine.
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angular positions of the three connecting rods are determined in terms of the crankshaft angular position. For
convenience, the complex number method [17] is used to conduct displacement and velocity analyses.

For a given crankshaft angle, y1, the linear positions of the three pistons may be determined by the
corresponding distances, sj, j ¼ 1, 2, 3, measured on their respective centerlines from the crankshaft centerline.
The angular positions of the three connecting rods, fj, j ¼ 1, 2, 3, measured counterclockwise from the three
respective centerlines may be used to determine the positions of the connecting rods. From the loop closure
equations, one may relate the three linear positions and three angular positions to the generalized coordinate
as follows:

f1 ¼ p� sin�1
r0

r1
sin y1

� �
,

s1 ¼ r0 cos y1 � r1 cos f1, (1)

f2 ¼ pþ sin�1
r0

r2
sin

2p
3
� y1

� �
þ

b1

r2
sin

2p
3
� f1 þ b1

� �� �
,

s2 ¼ cos�1
2p
3

r0 cos y1 þ b1 cosðf1 � b1Þ � r2 cos
2p
3
þ f2

� �� �
, (2)

f3 ¼ pþ sin�1
r0

r3
sin

4p
3
� y1

� �
þ

b2

r3
sin

4p
3
� f1 � b2

� �� �
,

s3 ¼ cos�1
4p
3

r0 cos y1 þ b2 cosðf1 þ b2Þ � r3 cos
4p
3
þ f3

� �� �
, (3)

where link lengths and angles are defined in Fig. 2.
From the above equations, the strokes of the three pistons are 31.5, 31.9, and 31.9mm. A small difference of

0.4mm is observed between the stroke of the master piston and the strokes of the two secondary pistons.



ARTICLE IN PRESS
X. Zhang, S.D. Yu / Journal of Sound and Vibration 319 (2009) 491–514496
To avoid dealing with lengthy formulas for velocities and accelerations, it was decided to determine the
velocities using a higher order central difference method. The linear velocities of the three pistons and the
angular velocities of the three connecting rods are determined at an arbitrary crankshaft angular position:

dfi

dt
¼ _y1

dfi

dy1
¼ _y1

�fi

��
y1þ2Dy1

þ 8fi

��
y1þDy1

� 8fi

��
y1�Dy1

þ fi

��
y0�2Dy1

12Dy1

( )
,

dsi

dt
¼ _y1

dsj

dy1
¼ _y1

�sijy1þ2Dy1 þ 8sijy1þDy1 � 8sijy1�Dy1 þ sijy1�2Dy1

12Dy1

� �
, (4)

where Dy1 is the angular step. To ensure accuracy, its value has been taken to be 0.03511 for all simulations in
this paper.

Linear velocities of the mass centers of the three connecting rods may be determined from the analyses of
the fundamental displacements and velocities. From the measurements taken on the individual connecting
rods, the mass center (GBj) of each of the three connecting rods for the Saito-450 engine is located on PjGj,
rG,1 ¼ 43.0mm, rG,2 ¼ rG,3 ¼ 10.9mm, as shown in Fig. 2. Distances rG,j between Gj and the crankpin Pj are
sufficient to locate the mass centers of the three connecting rods. The velocities of the three mass centers may
be found from the following equations:

vG;1 ¼ _s1 þ rG;1
_f1 e

iðf1þp=2Þ; vG;2 ¼ _s2 e
i2p=3 þ rG;2

_f2 e
ið2p=3þf2þp=2Þ; vG;3 ¼ _s3 e

i4p=3 þ rG;3
_f3 e

ið4p=3þf3þp=2Þ.

(5)

By taking the sum of the kinetic energy of all the components, the kinetic energy of the engine block, T1, can
be written as

T1 ¼
X3
i¼1

1

2
mR;iv

2
G;i þ

1

2
IG;i

_f
2

i þ
1

2
mP;iv

2
P;i

� �
þ

1

2
Ic
_y
2

1 ¼
1

2
Iðy1Þ_y

2

1, (6)

where mR,I and IG,i are the mass and the mass moment of inertia about the mass center of the ith (i ¼ 1, 2, 3)
connecting rod; vG,I and _fi are the velocity of the mass center of the ith (i ¼ 1, 2, 3) connecting rod and the
angular velocity of that rod; mP,I is the mass of the ith (i ¼ 1, 2, 3) piston; vP,I is the velocity of the mass center
of the ith (i ¼ 1, 2, 3) piston; Ic is the mass moment of inertia of the counterweight and the crank pin about the
axis of the crank angle y1 at the engine–crankshaft interface; I is defined as the effective mass moment of
inertia of the engine block.

The effective mass moment of inertia I is a 2p-period function of y1. To avoid using the lengthy formula, the
effective mass moment of inertia is expressed in terms of Fourier series as

I ¼ I0 þ
X40
k¼1

ðIk cos ky1 þ Î k sin ky1Þ, (7)

where I0, Ik and Î k, (k ¼ 1, y, 40), are Fourier coefficients. The values of I are obtained at 1024 mechanism
configurations in a cycle of 2p. The Fourier coefficients are then determined using the fast Fourier transform
algorithm [18]. Because of the smooth variations of I with the crankshaft angular position, the Fourier series
converge rapidly with the number of terms. It was decided to use 40 terms in the Fourier series, which is
enough to achieve sufficient accuracy. The converged Fourier series for the effective mass moment of inertia
and its derivative with respect to y1 are shown in Figs. 3 and 4, respectively. Parameters that are necessary for
the above analysis are given in Table 1.

2.2. Gas torque

The driving force of the system is the gas pressure in each cylinder. The crankshaft angle at the crankshaft-
engine interface of the intake, compression, expansion and exhaust processes are measured and the pressure
rise due to the polytropic process in compression and expansion stroke are determined with the exhaust gas
temperature measured at the exhaust outlet. The additional pressure rise due to combustion is approximated
by a polynomial with assumed combustion starting and completing crankshaft angles. Since two glow plugs



ARTICLE IN PRESS

x10-5

10.4

10.0

9.6

9.2

8.8
0 90 180 270 360

θ1 (deg)

M
as

s 
M

om
en

t o
f 

In
er

tia
 (

kg
m

2 )

Fig. 3. Variation of engine effective mass moment of inertia throughout a cycle.

x10-5

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0
0 90 180 270 360

θ1 (deg)

D
er

iv
at

iv
e 

of
 M

as
s 

M
om

en
t o

f 
In

er
tia

(k
gm

2 /d
eg

)

Fig. 4. Variation of derivative of engine effective mass moment of inertia throughout a cycle.

Table 1

Mass and mass moment of inertia of the components in the engine

Part Component # in Fig. 2 Mass (kg) Moment of inertia

about mass center

(kgm2)

Position of mass

center (mm)

Piston ]1+wrist pin 4 0.02436 – –

Piston ]2+wrist pin 6 0.02436 – –

Piston ]3+wrist pin 8 0.02436 – –

Counterweight – 0.12095 5.8679� 10�5a –

Crank pin – 0.00981 2.7122� 10�6b –

Master connecting rod 3 0.03109 1.5347� 10�5b 14.0 from A1

Secondary connecting rod+pin

(piston ]2)
5 0.001639 7.5120� 10�6b 16.8 from P2

Secondary connecting rod+pin

(piston ]3)
7 0.001639 7.5124� 10�6b 16.8 from P3

aMeasured about the axis of rotation of the crankshaft.
bMeasured about the mass center.

X. Zhang, S.D. Yu / Journal of Sound and Vibration 319 (2009) 491–514 497
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per cylinder are used to ignite the compressed gas-air mixture, it is difficult to determine precisely the start and
end of the power stroke in terms of the crankshaft angle. An estimate was made in a previous paper [19] based
on recommendations from Ma et al. [20] and Zweiri et al. [21]. The starting angle of the initial combustion and
finishing angle of the main combustion are determined to be 351 before the top dead center (BTDC) and 401
after the top dead center (ATDC), respectively. A clamped fourth-order polynomial is used to join the two
points. The peak value of the polynomial is controlled by the gas-oil mixture ratio which represents throttle
opening. The gas torque can be calculated with the pressure and the kinematic relationship between the
pistons position and the crankshaft angle, as

Q ¼
X3
i¼1

piðy1ÞAp

qsi

qy1

� �
(8)

where pi is the pressure in the ith cylinder (i ¼ 1, 2, 3); Ap is the piston top area (three pistons are identical);
and si (i ¼ 1, 2, 3) is the piston position. For a four-stroke engine, each cylinder fires once in two crankshaft
revolutions. For a prescribed throttle setting, the generalized force associated with y1 (or the gas torque) is a
4p-period function of y1. To express the gas torque conveniently, the Fourier series is again used. Unlike the
smooth-varying inertia, the gas torque varies sharply with y1 during the power stroke. As a result, 40 terms are
used in the Fourier series representation for the gas torque under a throttle setting. It is written as

Q ¼ Q0 þ
X40
k¼1

Qk cos
ky1
2
þ Q̂k sin

ky1
2

� �
(9)

where Q0, Qk, and Q̂k (k ¼ 1, y, 40), are Fourier coefficients. An example of the converged gas torque in one
thermodynamic cycle is shown in Fig. 5.

2.3. Aerodynamic load

The modified blade element theory is used to model the propeller aerodynamics and to take into
consideration the downwash induced by the blade sections. To achieve high accuracy, the entire propeller
blade is divided into 20 sections. Each section is treated as a 2-D airfoil for determining the local lift and drag
forces. Contributions of individual blade stations to the overall aerodynamic torque are summed over all 20
sections for different pitch settings and operating speeds. To conduct the blade element analysis for an
adjustable pitch propeller, the airfoil cross section at each station is approximated using a National Advisory
Committee for Aeronautics (NACA) 4-digit airfoil. The geometric and aerodynamic twist can be obtained as a
function of the blade pitch setting. All of these quantities are passed in a batch mode to the X-Foil code, which
was developed by researchers at the Massachusetts Institute of Technology and made accessible via the
Internet. The raw data were then best fit with a second-order polynomial in terms of propeller rotational
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Fig. 5. Gas torque of 4p period.
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speed. The propeller torque is written as

Qp ¼ a1 _yp þ a2 _y
2

p, (10)

where _yp is the angular velocity of the propeller; a1 and a2 are constants for a pitch setting. The aerodynamic
torque vs. the propeller speed is shown in Fig. 6 for three pitch settings: 400, 600 and 800. This part of work was
done by one of the author of this paper cooperated with Warwick in Ref. [22].

2.4. Finite element modeling of crankshaft

The crankshaft plays a pivotal role in transmitting power/torque from the engine to the propeller. To house
the bearings, intake/exhaust cams, and torque plates, the crankshaft is designed to have four different
segments as shown in Fig. 1. To define positions of all components in the system, a right-handed inertial
coordinate system, o-xyz with an origin at the engine–crankshaft interface, is used. The x- and y-axes are
shown in Fig. 2. The z-axis coincides with the crankshaft centerline, pointing out of the surface of the paper.
Parameters of the crankshaft and the propeller are given in Table 2.

Three-node torsional finite elements shown in Fig. 7 are employed to model the crankshaft torsion. Each node
has two degrees of freedom, namely, the angular position, y, and its derivative with respect to z, denoted as y0.
Within a finite element, y and y0 may be written in terms of the local coordinate z and the nodal variables as

y ¼ NðzÞDehe; y0 ¼
qNðzÞ
qz

Dehe; 0pzple, (11)
Table 2

Parameters of the crankshaft and the propeller

Part Length (mm) Radius (mm) Mass moment of inertia (kgm2)

Crankshaft step 1 13.0 10.0 1.59� 10�6

Crankshaft step 2 26.0 7.5/6.0a 0.76� 10�6

Crankshaft step 3 8.5 6.5/6.0a 0.18� 10�6

Crankshaft step 4 14.0 6.0 0.22� 10�6

Propeller assembly – – 3.40� 10�3

aMajor/root radii of the spline.
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where NðzÞ ¼ ½1 z z2 z3 z4 z5� is the shape function matrix; he ¼ ½y1 y01 y2 y02 y3 y03�
T is the element nodal

variable vector; De is the geometric matrix, whose elements are defined as

De ¼

1 0 0 0 0 0

0 1 0 0 0 0

�23=l2e �6=le 16l2e �8le 7=l2e �1=le

66=l3e 13=l2e �32=l3e 32=l2e �34=l3e 5=l2e

�68=l4e �12=l3e 16=l4e �40=l3e 52=l4e �8=l3e

24=l5e 4=l4e 0 16=l4e �24=l5e 4=l4e

2
6666666664

3
7777777775
.

The element kinetic energy and potential energy can be written as

Te ¼
1

2

Z le

0

rJ _y
2
dz ¼

1

2
_h
T

e Me
_he, (12)

Ve ¼
1

2

Z le

0

GJ
qhe

qz

� �2

dz ¼
1

2
hTe Kehe, (13)

where r is the density, G is the shear modulus, J is the polar moment of the cross sectional area, and

Me ¼ DT
e

Z le

0

rJNTNdz
� �

De; Ke ¼ DT
e

Z le

0

GJ
qNT

qz
qN
qz

dz
� �

De.

The crankshaft has four segments with different radii. Since the size of the steps between adjacent segments is
not small enough to be neglected. Additional constraint conditions have to be considered across the steps. To
apply the constraint conditions, an interface between two adjacent segments is introduced, as shown in Fig. 8.
There are two overlapped nodes on each interface. The nodal variables on these nodes are related with each other
through the constraint conditions; therefore, only one of the nodes should be considered dependent to the other.
For convenience, denote the nodal variables at the dependent node with superscript (d), and the variables of all
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the other nodes with superscript (i). The angular displacement vector of the crankshaft can then be written as

h ¼ yðiÞ1 y0ðiÞ1 � � � yðdÞn y0ðdÞn yðiÞn y0ðiÞn � � � yðiÞp y0ðiÞp

n o
, (14)

where the subscript 1, n and p denotes the first node, the overlapped nodes at segment interface n, and the node at
the propeller, respectively. The kinetic and potential energy of segment s can be written as

Ts ¼
1

2
_h
T

s Ms
_hs, (15)

V s ¼
1

2
hTs Kshs, (16)

where hs is the nodal displacement vector of segment s (s ¼ 1, 2, 3, 4);Ms is the mass matrix of segment s; and Ks

is the stiffness matrix of segment s.
The total kinetic and potential energies for the entire crankshaft can be written as

Tc ¼
1

2

X4
s¼1

_h
T

s Ms
_hs ¼

1

2
_h
T
Mc

_h, (17)

V c ¼
1

2

X4
s¼1

hTs Kshs ¼
1

2
hTKcy, (18)

where Mc ¼ diag M1 M2 M3 M4

	 

, and Kc ¼ diag K1 K2 K3 K4

	 

.

If Mc and Kc are partitioned and sorted according to the dependent and independent variables h(d) and h(i),
the kinetic and potential energies can then be written as

Tc ¼
1

2

_h
ðiÞ

_h
ðdÞ

( )T
MðiiÞc MðidÞc

MðdiÞ
c MðddÞ

c

" #
_h
ðiÞ

_h
ðdÞ

( )
, (19)

V c ¼
1

2

hðiÞ

hðdÞ

( )T
KðiiÞc KðidÞc

KðdiÞ
c KðddÞ

c

" #
hðiÞ

hðdÞ

( )
. (20)
2.5. System equations of motion

Across the interface between two adjacent segments, the following continuity and equilibrium conditions
must be satisfied

yðdÞn

y0ðdÞn

( )
¼ Cn

yðiÞn

y0ðiÞn

( )
, (21)

where

Cn ¼
1 0

0 J4
nþ1=J4

n

" #
,

Jn and Jn+1 are the polar moments of area of cross sections for segments n and n+1, respectively. The
constraint equations for the entire crankshaft can be obtained in the following vector form:

g ¼ hðdÞ � C � hðiÞ ¼ 0, (22)

where C ¼ diag½C1 C2 C3 � is the global constraint matrix.
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The kinetic energy of the dynamical system is

T ¼ T1 þ Tc þ Tp, (23)

where the kinetic energy of the propeller assembly, Tp, is

Tp ¼
1

2
Ip
_y
2

p, (24)

where Ip is the mass moment of inertia of the propeller assembly including the propeller, the torque plate, the
washer, the extension nut and the portion of the crankshaft covered by the propeller assembly. The value of Ip

can be found in Table 2.
The potential energy of the system mainly comes from the crankshaft. There are also intake/exhaust-valve

control springs in the engine. Calculations indicate that their potential energy is insignificant and can be
omitted in the system dynamics. The potential energy of the system is

V ¼ V c, (25)

where Vc is defined in Eq. (20).
The equations of motion can be derived from the augmented Lagrange equations [23,25] as

d

dt

qL

q_h
T

� �
�

qL

qhT
�GTk� q ¼ 0, (26)

where L ¼ T�V is the Lagrangian, k is the Lagrange multiplier vector; h ¼ hðiÞ; hðdÞ
� �T

,
G ¼ qg=qhT ¼ �C I

	 

, q is the generalized force vector, including the gas torque Q given in Eq. (9) and

the aerodynamic load Qp given in Eq. (10). The equations of motion of the constrained system are

MðiiÞc MðidÞc

MðdiÞ
c MðddÞ

c

" #
€h
ðiÞ

€h
ðdÞ

( )
þ

KðiiÞc KðidÞc

KðdiÞ
c KðddÞ

c

" #
hðiÞ

hðdÞ

( )
�
�CTk

k

( )
þ

h

0

� �
¼ 0. (27)

Substituting Eq. (22) into Eq. (27) and eliminating h(d) and k, the equations of motion are reduced to the
following equations that only contains h(i),

M€h
ðiÞ
þ K � hðiÞ þ h ¼ 0, (28)

where

M ¼MðiiÞ þMðidÞCþ CTMðdiÞ þ CT
�MðddÞC,

K ¼ KðiiÞ þ KðidÞCþ CTKðdiÞ þ CTKðddÞC,

h ¼ I €y
ðiÞ

1 þ
1

2
I 0 _y
ðiÞ2

1 �Q 0 � � � 0 Ip
€y
ðiÞ

p þQp 0

� �T

.

For convenience, superscript (i) in h(i) is dropped in the following sections.

3. Reduction of degrees of freedom

Linear time integration scheme such as the Newmark method is known to be inadequate when large
nonlinearities present as those in the equations of motion in above sections. The large number of degrees of
freedom prevents the direct use of accurate nonlinear time integration schemes. This conflict can be resolved
through the use of component mode synthesis.

The highest frequency of excitation in the driving forces expressed using 40-term Fourier series is 20
harmonics of the mean speed of the crankshaft. Finely tuned engine can reach a maximum mean speed of
8000 rev/min with a 2400 diameter and 600 pitch propeller, which gives out the highest possible excitation
frequency of 2667Hz. The fundamental and the second natural frequencies of the crankshaft are estimated to
be around 800–1000 and 26000–28000Hz, if the engine is regarded as a constant mass. It is known that the
variation of the mass moment of inertia will only change these frequencies slightly; hence the possible internal
resonance will only happen at the same magnitude of the fundamental natural frequency of the crankshaft.
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Consequently, only lower torsional modes of the crankshaft need to be retained in the system response. This
significantly reduces the total number of degrees of freedom. The reduced set of differential equations can then
be solved using a nonlinear integration scheme.

The component mode synthesis requires that some degrees of freedom are chosen as interface degrees of
freedom, while others as internal degrees of freedom. The motion of internal degrees of freedom can be related
to the motion of interface degrees of freedom and internal modes. Since the nonlinear terms in Eq. (28) are
related only to y1 and yp, these variables are chosen as interface degrees of freedom. Denoting the interface
degrees of freedom with a subscript f and internal degrees of freedom with a subscript t, Eq. (28) can be
rewritten as

Mtt Mtf

Mft Mff

" #
€ht

€hf

( )
þ

Ktt Ktf

Kft Kff

" #
ht

hf

( )
þ

0

hf

( )
¼ 0, (29)

where

ht ¼ y01 y2 y02 � � � yp�1 y0p�1 y0p
n oT

; hf ¼ y1 yp

n oT

; hf ¼
I €y1 þ 1

2
I 0 _y

2

1 �Q

Ip
€yp þQp

8<
:

9=
;.

If the interface is fixed by letting hf ¼ 0, the first set of equations in Eq. (29) is reduced to

Mtt
€ht þ Kttht ¼ 0. (30)

An eigenanalysis for Eq. (30) can be easily conducted. Let Kt be the diagonal matrix with each diagonal
element representing a natural frequency of the internal system, and Ut be the modal matrix normalized with
respect to the mass matrix Mtt. Each column of the modal matrix represents a normalized modal vector
corresponding to the diagonal element in matrix Kt.

Under the fixed interface condition, a solution for the internal degrees of freedom can be written as

hð1Þt ¼ Utx, (31)

where x is the modal coordinate vector. Now release the interface, the internal structure will have additional
response due to the motion of the interface. That is

hð2Þt ¼ �K
�1
tt Ktf hf ¼ Uf hf . (32)

The total response consisting of two responses is written as

ht ¼ hð1Þt þ hð2Þt ¼ UtxþUf hf . (33)

Then the original variable vector can be expressed as

ht

hf

( )
¼ Ts

x

hf

( )
. (34)

where

Ts ¼
Ut Uf

0 I

� �
.

Now the problem is transformed to a space mixed with modal coordinates x and interface coordinates hf.
Since the high-frequency modes are discarded, matrix Ut contains only a few columns of modal vectors.
Substituting Eq. (34) into Eq. (30) and pre-multiplying the so-obtained equations by (Ts)

T, the equations of
motion can be written as

I Mtf

Mft Mff

" #
€xt

€hf

( )
þ

Kt 0

0 Kff

" #
xt

hf

( )
þ

0

hf

( )
¼ 0, (35)

where I is an identity matrix. The above reduced equations of motion represent an autonomous differential
system. It can be solved efficiently using accurate nonlinear time integration method.
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4. Numerical results

4.1. Influence of crankshaft flexibility and varying inertia of the engine block

To study the influence of the crankshaft flexibility, a rigid body model is implemented by ignoring the
flexibility of the crankshaft. The single equation of motion, which governs the response of the dynamical
system, is written as

I €y1 þ 1
2
I 0 _y

2

1 ¼ Q�Qp. (36)

The model is numerically solved using the fifth-order Runge–Kutta method with a 600 pitch setting and 50%
throttle opening. The velocity response and its frequency spectrum are shown in Figs. 9 and 10. The response
of the system at the propeller under the same settings is also obtained from the flexible model and shown in
Figs. 9 and 10 for comparison. The mean speed is deducted from the angular velocity to obtain the velocity
fluctuation. The oscillatory velocity is deterministic and hence can be represented by the root-mean square
(rms) spectrum. It can be seen that the flexibility of the crankshaft increases the velocity oscillation by
introducing a high-frequency component. The frequency spectrum shows that in both models there are
responses in all integer and half harmonics. The 11

2
-order harmonic is the predominant frequency; while in the

flexible model, a spike across the 131
2
- and 14-order harmonics is present. This response is not concentrated at a

single frequency but distributes in a narrow band. The varying inertia of the engine block causes the natural
frequency of the crankshaft to vary with its angular position. The variation of the fundamental natural
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frequency of the crankshaft with the crankshaft angular position is shown in Fig. 11. The fundamental natural
frequency varies from 896 to 956Hz in one revolution, which explains the presence of the 1312- and 14-order
harmonics.

Another influence of the crankshaft flexibility is the variation of periodicity. If the displacement related to
the mean speed is deducted from the total displacement, the rigid body model response is periodic as presented
in the phase plot in Fig. 12. However, when crankshaft flexibility is considered, the system motion is no longer
periodic, but a bounded motion as demonstrated by the Poincare map in Fig. 13(a). To view this situation
more clearly, the Poincare map is extruded along the axis of the crankshaft angle from 0 to 4p (a
thermodynamic cycle) and shown in Fig. 13(b). The periodic motion is transferred to a quasi-periodic motion.

The velocity spectrum shows that the flexibility-induced oscillation is small for the higher order harmonics.
However, small amplitude high-frequency velocity oscillation leads to a large amplitude oscillation in
acceleration and hence a large shear. Comparisons of shear stresses at the torque plate, predicted using the
rigid and rigid-flexible models, shown in Fig. 14, indicate that the crankshaft flexibility has a significant effect
on the shear stress.

To see the influence of the varying inertia of the engine block, a solution is obtained by ignoring the inertia
variation and compared to the previous result that involves the varying inertia, as shown in Fig. 15. It can
been seen that the varying inertia has little influence on the velocity response for this particular
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engine–propeller system, since the variation of the effective mass moment of inertia of the engine is only 5% of
its mean value and the nonlinear term related to the derivative of the varying inertia in the equations of
motion, I 0 _y

2

1, is also small (at the 10�5 level).
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Table 3

Computing time of the reduced model and the full model for a 0.1 s solution

Reduced dof model Full dof model

1 mode retained 2 modes retained 3 modes retained 4 finite elements 8 finite elements

Allowed time increment (ms) 0.33 0.17 0.12 0.040 0.041

Computing time (s) 49 108 147 18200 66400
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Fig. 16. Comparison of the angular velocity between the full dof model and the reduce dof model in one cycle: without substructuring

——; with 1 internal mode retained � ; with 2 internal mode retained J.

0

10

20

30

40

50

60

0

Harmonic Order

A
m

pl
itu

de
 (

rp
m

-R
M

S)
  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 15. The influence of the varying engine inertia on the velocity spectrum: without varying inertia —; with varying inertia � .

X. Zhang, S.D. Yu / Journal of Sound and Vibration 319 (2009) 491–514 507
4.2. Efficiency and accuracy of the substructuring method

To demonstrate the accuracy of the substructuring method, velocity responses at the propeller are obtained
using the model with full degrees of freedom as specified in Eq. (28), the reduced model with one internal
mode, and two internal modes. These three sets of results are compared in Fig. 16. It can be seen that the
reduced model even with one internal mode yields satisfactory result. Table 3 shows the computational costs
for the full model and the reduced model with different number of internal models retained. The computing
times are recorded for 0.1 s simulation duration on a 1.66GHz personal computer. In comparison with the full
model, the substructuring method not only greatly reduces the computing time, but also improves the
numerical stability [24]. As a consequence, a larger integration time step can be used to achieve the same level
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of accuracy. Another advantage for the substructuring method is that the computing time does not depend on
the number of finite elements used, but merely on the number of internal modes retained.

5. Experimental results and discussions

A test rig of the Saito-R450 engine coupled with a variable pitch SOLO propeller (2400 in diameter), shown
in Fig. 17, is set up to further study the torsional vibration of the crankshaft. A magnetic encoder (Admotec,
KL2202) is installed on the torque plate as shown in Fig. 18, to measure the instant angular velocity of the
crankshaft at this location. The magnetic encoder consists of a rotating ring made of ferrous metal and a
magnetic sensor. The ring has 64 precisely machined magnetic teeth that provide the code pattern. The
nominal pitch angle of the encoder, covering one magnetic tooth and one space, is Dy ¼ 2p/64. As the ring
rotates with the torque plate, these teeth disturb the magnetic flux emitted by the magnet, and cause the flux
field to expand and collapse. These changes in the electromagnetic field are picked up by a sensor. The sensor
Magnetic
pickup

Gear tooth
(ferrous metal)

Shaft

Gear

Fig. 18. Magnetic encoder: (a) illustration of the magnetic encoder and (b) mounting position of the magnetic encoder.

Fig. 17. Experimental setup.
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generates a pulse signal instantly in accordance with the teeth and spaces arrive at the sensor location. The full
scale output is a 0–5 v electrical signal, but in practice the output is less than full scale due to the high angular
speed of the crankshaft. The electrical signal pulse signal is then sampled and stored using a 16 channel data
acquisition system having a 16-bit analog-digital converter and a maximum sampling rate of 100 kHz. The
output pulse signal is shifted to have a zero mean voltage for the convenience of data processing.

The original signal is a series of pulses with varying widths in time, as shown in Figs. 20(a), 21(a), 22(a) and
23(a). For a brand new engine working in break-in stage, the crankshaft mean speed can be obtained in a
range from 2500 to 4500 rev/min. The instant velocity fluctuations are only a few percentages of the mean
speed. The pulse width variation is very small and in the same order of sampling interval. To overcome this
difficulty, a data processing scheme is developed by utilizing the slopes of the leading edges. The leading edge
is curve-fitted using a linear polynomial. The intersection between the polynomial and the 0 v line is found; and
the time is recorded. The instant angular velocity at the midpoint in time between the arrival times of two
consecutive leading edges is taken to be the ratio of the pitch angle Dy to the elapsed time. Since the main
portion of the leading edge is always a straight line, and the sampling rate of 100 kHz is high enough to ensure
that there are more than three data points on the main portion; and the linear polynomial is enough for
obtaining the arrival time.

Using the experimental setup and the data processing scheme, angular velocities and their spectra for
different mean speeds are obtained. Fig. 19 shows the spectra of the angular velocity fluctuation of the
crankshaft at the torque plate at different mean speeds from 2478 to 4130 rev/min. The 11

2
-order harmonic is
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the dominant frequency for all cases except for the mean speed of 3293 rev/min, in which case a larger spike
appears at the 1-order harmonic. Besides the 112-order harmonic, spikes at the 1-, 2-, and 3-order harmonics are
also visible. For harmonic orders higher than 5, their amplitudes are very small until the harmonic frequency
falls in the range of torsional resonance. The resonance harmonic order decreases with the increase of the
crankshaft mean speed, since the torsional natural frequency is not affected by the mean speed. The resonant
spikes are distributed in a narrow band rather than concentrated on a single frequency.

The experimental data are compared to the simulation results, as shown in Figs. 20–23 for four test cases. It
can be seen that there are good agreements between the simulation and experimental results for the 11

2
-order

harmonic for all cases. At very low mean speed (Fig. 20), the resonant frequency component does not appear
within the 16-order harmonic. This is because the 16-order harmonic is lower than the fundamental natural
frequency of the system. Simulation results show that a resonant peak appears around 20-order harmonic with
a small magnitude; however, this cannot be confirmed experimentally due to the limited number of teeth of the
magnetic encoder. When the throttle opens wider, the mean speed increases. The flexibility-induced frequency
appears within the 16-order harmonic, as can bee seen in Fig. 21. As a consequence, the high-frequency
oscillations in velocity increase apparently. When the mean speed keeps increasing, the flexibility-induced
frequency components gradually move towards lower order harmonics as shown in Figs. 22 and 23. The
amplitude of high-frequency oscillations also increases. The experimental results show that the theoretical
models are able to predict the three major spikes induced by the firing in each cylinder in a thermodynamic
cycle, and the resonant oscillations in higher order harmonics induced by the crankshaft flexibility. It also
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reveals more information of the system behavior that the theoretical models do not provide, such as the high
level of amplitudes at 1- and 2-order harmonics in the velocity response in Figs. 21c, 22c and 23c, and the
discrepancy on the 3–6-order harmonics between the theoretical models and the real system. The theoretical
models also provide information for understanding the measurement and evaluating the working status of the
engine. A fast and accurate strategy for engine monitoring and diagnosis may be implemented by combining
the above simulation and experimental procedures.

6. Conclusions

This paper presents theoretical and experimental procedures for investigating the torsional vibration of the
crankshaft in an engine–propeller dynamical system. The nonlinearities induced by the varying mass moment
of inertia, the propeller aerodynamics and the cylinder gas torque are implemented in a rigid body model.
Crankshaft flexibility is further included using finite element method in a flexible body model. Comparisons of
the numerical solutions of the two models show the influence of flexibility on the system behavior. The
crankshaft flexibility is found to introduce higher order harmonic oscillations in velocities and accelerations
due to the resonance between the high-frequency excitation in the gas torque and the fundamental natural
frequency of the crankshaft. The high-frequency resonance greatly increases the amplitude of the oscillatory
acceleration and shear stress. The varying inertia is found to have limited influence on the amplitude of
velocity response, but it causes the natural frequencies of the crankshaft to vary with angular position in 2p.
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As a consequence, the high-frequency resonance spreads over a narrow band in the frequency domain,
rather than concentrating on a single frequency. The nonlinearities and the crankshaft flexibility
introduce uncertainties in the periodicity of the steady state velocity response, turning the periodic motion
to quasi-periodic.

The component mode synthesis is employed to reduce the number of degrees of freedom in the flexible body
model so that the model can be practically solved using accurate nonlinear time integration methods.
Simulation tests show that the reduction scheme is highly efficient and accurate, being able to reduce the
computational cost in a few magnitudes, enhance the integration stability, and maintain all the nonlinear
properties. The use of component mode synthesis is proved to be beneficial in the numerical analysis of
nonlinear dynamical systems.

The experiments performed on a three-cylinder four-stroke engine coupled with a 2400 propeller confirm the
findings from the numerical studies of the rigid and flexible body models. Firstly, the dominant harmonic
component in the angular velocities in all cases is the 11

2
-order harmonic, which is consistent with the general

understanding for this type of engine. The rigid body type motion of the crankshaft caused by the uneven
cylinder firings is captured by the theoretical models. Secondly, the crankshaft flexibility-induced resonance
presents itself in the harmonic range that is discernable to the sensing equipment, when the mean speed
increases from low to high level. The frequency range of the higher order harmonic oscillations are captured
precisely by the flexible body model. The experimental procedure combined with the numerical analysis can be
utilized in engine health monitoring and fault diagnosis.
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